

Clearing the Validation Hurdle for Connected and Autonomous Vehicles

41st Automotive-Petroleum Industry Forum April 12th, 2022

SO HOW MANY MILES TO VALIDATE AN AV?

Waymo >20M total self-driving miles, 74,000 driverless miles (2019) To prove AV's are 20% better than human drivers using a fleet of 100 AV's driving 25 mph:

- Avoiding Crashes 28M miles (1.3 years)
- Avoiding Injuries –170M miles (7.6 years)
- Avoiding fatalities 5B miles (225 years)

Kalra, Nidhi and Susan M. Paddock, *Next Stop, Neptune? Why We Can't Rely on Test-Driving Alone to Assess the Safety of Autonomous Vehicles*, Santa Monica, Calif.: RAND Corporation, IG-128, 2017. As of April 08, 2021: https://www.rand.org/pubs/infographics/IG128.html

A SOBERING TREND IN TRAFFIC DEATHS

According to NHSTA

1.1 deaths per 100M miles (2019)
1.37 deaths per 100M miles (2020)
↑7.2% despite driving ↓13.2%
↑ 12% first 9 months of 2021

2019 Roadway Fatalities Report Released | NHTSA

2020 Fatality Data Show Increased Traffic Fatalities During Pandemic | NHTSA

Traffic Fatalities Rise in First Nine Months of 2021 | NHTSA

To prove AV's are 20% better than human drivers using a fleet of 100 AV's driving 25 mph:

- Avoiding Crashes 28M miles (1.3 years)
- Avoiding Injuries –170M miles (7.6 years)
- Avoiding fatalities 5B miles (225 years)

Kalra, Nidhi and Susan M. Paddock, *Next Stop, Neptune? Why We Can't Rely on Test-Driving Alone to Assess the Safety of Autonomous Vehicles,* Santa Monica, Calif.: RAND Corporation, IG-128, 2017. As of April 08, 2021: https://www.rand.org/pubs/infographics/IG128.html

SOLVING THE LONG-TAIL PROBLEM IN AUTONOMOUS DRIVING

According to NHSTA

1.1 deaths per 100M miles (2019)
1.37 deaths per 100M miles (2020)
↑7.2% despite driving ↓13.2%
↑ 12% first 9 months of 2021

2019 Roadway Fatalities Report Released | NHTSA

2020 Fatality Data Show Increased Traffic Fatalities
During Pandemic | NHTSA

Traffic Fatalities Rise in First Nine Months of 2021

EXISTING TESTING METHODS

TIME-SCALE, REAL-WORLD, COMPLEXITY

A smart mobility test center integrates the physical and the virtual

SMART MOBILITY TEST CENTER

Testing & Validation of Advanced Mobility Technologies

Connected and Autonomous Vehicles Advanced Driver Assistance Systems Electrification (XFC, V2G, Cyber) Ecosystem for Future Mobility

COMPREHENSIVE REAL-ROAD TEST ENVIRONMENT

- 1. Real road systems
- 2. ITS Network Infrastructure
- 3. Specialized Test Equipment
- 4. Virtual/Digital Tool Chain

NETWORK INFRASTRUCTURE

PRIVATE 4G LTE & 5G SUB-6 CELLULAR

OPTIMIZED CELL COVERAGE

FIBER OPTIC CABLE BACKBONE

DSRC (15 RSUS) Upgrading to C-V2X American Center for Mobility CONNECTED. AUTOMATED. VALIDATED.

UP TO 100 GBPS DATA TRANSFER

CLOUD - DATA MANAGEMENT & ANALYTICS PLATFORM

Advanced communications and network infrastructure

TEST EQUIPMENT: ROBOTIC SOLUTIONS, WEATHER, TARGETS

RAIN AND GRIME TRAILER TRUCK

PEDESTRIAN SOFT TARGETS

SR60 TORUS

STEERING ROBOT

Merican Center for Mobility

ACCELERATOR ROBOT

GST – GUIDED SOFT TARGET

Rental equipment and support services available

Autonomous Cloud Introduction

- Managed Service supporting critical data, analytics and development capabilities
- Eliminates upfront, multi-million \$ investment and frees talent to focus on mission-critical activities
- Client-specific MVP release is delivered in approx. 12 weeks.

DEMONSTRATION AT ACM: CRASH BV CUT-IN AV

DEMONSTRATION AT ACM: HIGHWAY MERGING

Values of SAFE-TEST: 1 ACM Mile = 5000+Road Miles Cost 50 – 100x Less

Reduce development costs
 Compress development cycle

CAV TESTING NEEDS

Replicating Real World Scenarios:

- Sensors & perception
- Connectivity
- Interoperability
- Vehicle Interactions:
 - Real-world roads
 - Other vehicles
 - Other types of road use

Bringing together roads, sensors, ITS, tool chain and AV specific testing strategies to accelerate validation

CLEARING THE AV VALIDATION HURDLE

More advanced validation tools and resources are required to help reduce the amount of public road testing to validate AV's for deployments

- Public road testing is necessary but insufficient
- Integrated approach simulation, track, road
- More advanced tools
 - Augment Reality, Scenario Generation
- Affordable cloud-based tools
 - Data Management & Analytics
 - Simulation & Compute
- Interoperability (still yet to come)
- Standards (Industry, Federal, State)

Perspectives on Market Commercialization

CURRENT INDUSTRY FOCUS ON AUTOMATION

- Level 2+ is not industry standard definition
- Implies Level 3 capabilities but with driver fully engaged

Heavy focused on deployment of level 2+, with some level 3 for consumer vehicles and level 4 for commercial fleets

CONNECTIVITY

Cooperative Driving Automation (CDA) required for full transportation safety, efficiency and mobility benefits

- V2X (DSCR) phasing out
- C-V2X / 5G phasing in
- Assumes FCC ruling stands

AV's will be deployed in parallel with increasing levels of connectivity

CELLULAR VEHICLE TO EVERYTHING (C-V2X) (TWO COMPLEMENTARY MODES)

Direct

V2V, V2I, and V2P operating in ITS bands (e.g. ITS 5.9 GHz) independent of cellular network

Network

V2N operates in traditional mobile broadband licensed spectrum

Short range (<1 kilometer), location, speed ... Implemented over "PC5 interface" Long range (>1 kilometers). e.g. accident ahead Implemented over "Uu interface"

5GAA The C-V2X Proposition: https://5gaa.org/wp-content/uploads/2018/05/3.-The-C-V2X-Proposition-Ford.pdf

Mobile Network Operators (MNOs) have proposed that V2N can be fast and lower cost for early deployment

STATUS OF 5G

- Still early stages of roll out
- Not all 5G is the same
 - Low, Mid, mm-wave
 - Coverage vs. Bandwidth
- Mid-Band is said to be sweet spot
- Advances mm-wave Antenna Systems
- Demonstration of V2N use cases
- Limited commercial private network deployment for transportation

CONNECTED AND AUTOMATED VEHICLES CORRIDOR

- MDOT working with Cavnue
- 40-mile CAV corridor between Ann Arbor and Detroit
- Managed lane for CAVs with connectivity to infrastructure
- Infrastructure financing model
- "Automated Vehicle Roadway" Proposed MI legislation SB 706

Example Components of Integrated Infrastructure Technology Framework for CAV Corridors

Source: Cavnue

PATHWAYS TO COOPERATIVE DRIVING AUTOMATION

Is C-V2X / 5G sufficient for CDA? Can you get there with a mixed fleet?

COMMERCIALIZATION PERSPECTIVES

- **Technology** Not the limiting the factor. Building blocks are available.
- **Design** Many possible vehicle-infrastructure configurations. Which meet use case requirements?
- Validation Use cases and with proper edge cases is a long pole in the tent
- Build, Operate, and Maintenance of Infrastructure
 - Municipalities want to see more vehicles before they invest in infrastructure
 - OEMs reluctant to burden vehicles with chip sets until they see more infrastructure
- Finance Who pays for the benefits (public service, fee for service) is key?
- Regulatory Both safety an energy efficiency policy considerations
 - NHTSA (FMVSS), States for Licensing & Operation
 - New Fuel economy test cycles, EPA window stickers (mpg, EV range), and innovative policy design
- Market Acceptance Will adoption be market-driven by consumers?

Technology is not the main limiting factor for commercialization of L4/L5

Ways for API to Engage Going Beyond CAV Testing

GROWING A DIVERSE MOBILITY ECOSYSTEM

ACM's targeted efforts and customer base extends across a variety of industries that comprise the mobility ecosystem.

ACM's focus is broad towards future mobility

ACM AREAS OF FOCUS

R&D Test &Validation Service Partner Infrastructure Partner

TECHNOLOGY DEVELOPMENT

B2B Technology Demonstration Product Showcase & Launch Enhancement Sponsor

MARKETING

Training & Professional Development STEM, K-12, Higher Ed Challenges & Competitions Consumer Awareness

EDUCATION & WORKFORCE

There are many ways to engage in ACM ecosystem

American Center for Mobility CONNECTED. AUTOMATED. VALIDATED.

©2020 AMERICAN CENTER FOR MOBILITY ALL RIGHTS RESERVED. No reproduction of this material is allowed without written permission of American Center for Mobility. Contact <u>acmmarketing@acmwillowrun.org</u> for additional inquiries.